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Abstract. We show how entangled atomic pairs can be prepared in order to test the Bell inequalities.
The scheme is based on the interaction of the atoms with a highly localized field mode within a photonic
crystal. The potential of using optically separated transitions and the stability of the entangled state to
spontaneous emission could lead to the closure of the communication and the detection loopholes appearing
in experiments so far. The robustness of the scheme against detector inefficiencies, the spread in the atomic
velocities and the fact that the entangled pairs are not generated simultaneously is also studied.

PACS. 03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox, Bell’s inequalities, GHZ
states, etc.) – 42.50.-p Quantum optics – 42.70.Qs Photonic bandgap materials

During the past twenty years, a number of interesting ex-
periments for testing the Bell inequalities [1,2] have been
proposed and carried out. In most, the entangled particles
are photons, [3,5,8]. Violation of the inequalities occurs,
supporting the quantum mechanical description of Nature
against local realistic theories. However in all these pho-
ton experiments, low detection efficiency combined with
low analyzing speed of the results prevented the complete
closure of the detection and/or the communication loop-
hole. Experiments [8] which partially or even completely
close one of the loopholes exist, e.g. the experiment by
Weihs et al. [9] where the communication loophole was
closed. However no photon experiment closing both loop-
holes has been reported so far.

In addition to photon based experiments there have
also been proposals using atoms, based on the direct ma-
nipulation of the atomic degrees of freedom, by interac-
tion with the quantized field of the micromaser [10–13] or
by photo-dissociation of dimers [4,15] and more recently
by laser manipulating ions trapped inside a cavity [16].
Although in these elegant experiments the detection effi-
ciency was higher than the photon based ones, problems
such as as sequential detection (for the micromaser based
experiments) and fragility of the Rydberg atoms at room
temperature did not allow the complete closure of all the
loopholes.

We propose to create entangled atomic states using
a photonic crystal (or photonic band gap material-PBG)
for a Bell inequalities test. The potential of using opti-
cally separated transitions which can be detected very ef-
ficiently, the stability against background radiation, and
the inhibition of spontaneous emission inside the crystal
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can lead to the closure of all loopholes appearing in pre-
vious experiments.

In our scheme the entanglement originates from the in-
teraction of two atoms with a resonant defect mode inside
a photonic crystal. Photonic crystals are highly porous
three dimensional periodic materials of high refractive in-
dex with pore periodicity on the length scale of the rel-
evant wavelength of light. They exclude electromagnetic
modes over a continuous range of frequencies [17,18,20,25]
(a photonic band gap). By introducing voids that are
larger than the rest of the array, strongly localized sin-
gle modes of light can be engineered within the otherwise
optically empty PBG [19].

Our system consists of two two level atoms, the first
of which is initially prepared in the upper of two opti-
cally separated states, denoted by |e1〉 and the second
in the lower one |g2〉 [10,11]. The two atoms propagate
sequentially in orthogonal directions through the defect
region of the crystal (see Fig. 1). The defect mode is ini-
tially prepared in the vacuum state |0〉 and it is on res-
onance with the atomic transition |ei〉 → |gi〉 (Fig. 2).
Although our scheme has some similarities with those pro-
posed by [10,11] and implemented by [13], the potential
of entangling and manipulating conventional, rather that
Rydberg atoms in a spontaneous emission free environ-
ment (the photonic crystal) opens the way to a new class
of loophole free Bell experiments.

The dynamics of a two level atom passing through a
point defect [21–23], under the dipole and rotating wave
approximations are described by the Jaynes-Cummings
Hamiltonian [7,21]:

H(r) =
~ωa

2
σz + ~ωda

†a+ ~G(r)(aσ+ + a†σ−) , (1)
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Fig. 1. The proposed scheme for creating entangled atomic
pairs using a photonic crystal.
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Fig. 2. The atomic system consideration. The transition |g〉 →
|e〉 is resonant with the defect frequency whereas the |e〉 → |g′〉
undergoes a Π rotation just before the atoms exit the crystal.
The latter is possibe through the coupling with an external
laser field injected in the crystal through a properly engineered
line defect.

where σz , σ± = σx± σy are the Pauli spin operators for
a two-level atom with transition frequency ωa, and a, a†
are the annihilation and creation operators for a photon
in a defect mode of frequency ωd. The atom field coupling
strength may be expressed as G(r) = Ω0

(
d̂eg · ê(r)

)
f(r),

where Ω0 is the peak atomic Rabi frequency over the de-
fect mode, d̂eg is the orientation of the atomic dipole mo-
ment, and ê(r) is the direction of the electric field vector
at the position of the atom. The three-dimensional mode
structure is a function of the size and shape of the defect.
In our case we need only consider the one-dimensional
mode profile that intersects the atom’s linear path. The
profile f(r) has an exponential envelope centered about
the point in the atom’s trajectory that is nearest to the
center of the defect mode, r0. Within this envelope, the
field intensity oscillates sinusoidally, and for fixed dipole
orientation, variations in the relative orientation of the
dipole and the electric field gives a sinusoidal contribution.

In our case we set d̂eg · ê(r) = 1 and write

f(r) = e−
|r−r0|
Rdef cos

[π
a

(r − r0) + φ
]
· (2)

Also Rdef defines the spatial extent of the mode which
is at most a few lattice constants for a strongly confined
mode in a PBG, and φ = 0.

The atom-field state function after an initially excited
atom has passed through a defect can be written as

|Ψ〉 = Ce(t1)|e〉|0〉+ Cg(t1)|g〉|1〉, (3)

where Ce/g are the amplitudes of the atom being in the
excited/ground atomic state and t1 is the interaction time
of atom 1 with the defect. As soon as atom 1 leaves the
defect region, atom 2 in its ground state is sent through.
Letting t2 be its interaction time and taking into account
that ti = vi/Rdef the final state of the system can be
written as follows

|Ψf〉 = Ce(v1)|e1〉|g2〉|0〉+ Cg(v1)Ce(v2)|g1〉|g2〉|1〉
+ Cg(v1)Cg(v2)|g1〉|e2〉|0〉 · (4)

Following the approach of references [21–23], we solved
numerically the above equation for the λ = 780 nm
transition of an initially excited Rb atom. We assumed
that the atom travels through a point defect in a opti-
cal photonic crystal [24] at thermally-accesible velocities
(v ∼ 100–600 m/s) and is on resonance with the defect
mode (ωa = ωd = 2.4× 1015 rad/s) (see Fig. 1). The rest
of the parameters are Rdef = a, φ = 0, a = 0.8λ, and
Ω0 = 1.1× 1010 rad/s [22]. The singlet state is produced
for values of the atomic velocities equal to v1 = 231 m/s
and v2 = 270 m/s as for them Ce(v2) = 0, Cg(v2) = 1 and
Ce(v1) = −Cg(v1) = 1/

√
2. If we let v1, v2 be arbitrary

we then obtain the density matrix

ρ = Trfield[|Ψf〉〈Ψf |]
= ρ1|e1, g2〉〈e1, g2|+ ρ2|g1, g2〉〈g1, g2|

+ρ3|g1, e2〉〈g1, e2|+ ρ4|e1, g2〉〈g1, e2|
+ρ5|g1, e2〉〈e1, g2| (5)

for the two atoms. The coefficients

ρ1 = |Ce(v1)|2,

ρ2 = |Cg(v1)Ce(v2)|2,

ρ3 = |Cg(v1)Cg(v2)|2,
ρ4 = Ce(v1)C∗g (v1)C∗g (v2),

ρ5 = Cg(v1)Cg(v2)C∗e (v1) (6)

obey the normalization condition ρ1 + ρ2 + ρ3 = 1.
Test Bell’s inequality we measure the quantity [1]

S = E(φ, θ) −E(φ, θ′) +E(φ′, θ) +E(φ′, θ′) (7)

where E(φ̂, θ̂) is the expectation value of σ1 and σ2 along
the directions φ̂, θ̂

E(φ̂, θ̂) = 〈σ1 · φ̂ σ2 · θ̂〉 = Tr(ρσ1(φ̂)σ2(θ̂)) (8)

with σi = (σix, σiy , σiz) being the Pauli spin operator
for the two level atom i. If θ̂ = (sinα, 0, cosα) and θ̂ =
(sinβ, 0, cosβ), then

E(φ̂, θ̂) = (2ρ2 − 1) cosα cosβ + (ρ4 + ρ5) sinα sinβ. (9)

For the special case of v1 = 231 m/s and v2 = 270 m/s,
i.e., the singlet state, this reduces to

E(φ̂, θ̂) = − cos(α − β) (10)
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Fig. 3. Contour plot of Bell’s parameter S̄ as function of the
atomic velocities v1, v2.

and with α = 0, α′ = π/2, β = π/4, and β′ = 3π/4 we ob-
tain from equation (7) |S| = 2

√
2, the maximum violation

of Bell’s inequality.
With these choices of angles, in the more general case

of arbitrary v1, v2, the quantity S is given by

S =
√

2|(2ρ2 − 1) + (ρ4 + ρ5)|. (11)

For two-level atoms, the measurement of the Pauli oper-
ators along any direction φ can be performed [10–14] by
applying a controlled pulse to the atom which transforms
the states |e〉 and |g〉 into the eigenstates of σ · φ̂; a sub-
sequent measurement of the state of the atom (ground or
excited) would give the desired measurement of the ob-
servable corresponding to σ · φ̂ (see Fig. 1).

In Figure 3 we show contour plots of |S| versus the
velocities. The values of the parameters correspond to the
case of Rb atoms traveling through a defect in an optical
photonic crystal (e.g., GaP) at thermal velocities (v ∼
150−400 m/s). The extend of the defect mode is assumed
to be equal to the lattice constant a and a = 0.8λ. The
coupling constant has a maximum value of 1.1×1010 rad/s
at the center of the defect. The dashed lines in the plot
represent to |S| = 2.2, 2.4, 2.6, 2.8, whereas the solid line
corresponds to S = 2, the maximum value allowed by local
realistic theories.

As the transitions here are optically separated, deco-
herence due to spontaneous emission would potentially be
a problem during the flight from the crystal to the analyz-
ers/detectors (inside the crystal spontaneous emission is
competely inhibited [18]). To tackle this problem through
a properly engineered line defect [26] we inject a coher-
ent light field into the crystal which crosses the atom’s
path. This field is resonant with the |e〉 → |g′〉 transition.
By adjusting the field intensity properly we can apply a
Π pulse between |e〉 and |g′〉 transferring any population
from |e〉 to |g′〉 (see Fig. 2). The transition |g′〉 → |g〉 is
dipole non-allowed and thus can be considered stable for
our purposes (lifetime∼1 s). At thermal velocities of the
order of few hundred m/s, the minimum field strength,
E, required to fully rotate the Bloch vector for the op-
tical transition |e〉 → |g′〉, (λ ∼ 1 µm), is of the order
of few kV/m. This magnitude of field strength should be
attainable using a cw laser whose output is coupled into
waveguide channels of λ2 cross-section. This is well below
the ionization field strengths of both the flying atom and
the photonic crystal.

Our scheme is robust against inefficiencies and prob-
lems that are usually encountered in other atomic Bell
experiments. Firstly, careful attention should be paid on
the constitution of the ensemble of pairs on which the Bell
test is to be performed [12], due to the fact that our en-
tangled pairs are not generated together as the photons
in the corresponding atomic cascade or parametric down
conversion experiments [2,3,5,6,8], More specifically, the
mean times T1 between atoms from oven 1 (1-atoms), the
mean times T2 between atoms from oven 2 (2-atoms), the
average interaction times τ̄1 of 1-atoms with the defect,
the average interaction times τ̄2 of 2-atoms with the de-
fect, and the lifetime τdef of a photon in the defect should
satisfy the following conditions: T1 > 10τdef , τdef > 100τ̄1,
T2 ≈ 10τ̄1 ≈ 10τ̄2.

Our scheme is capable of satisfying these conditions.
Indeed with a defect of a diameter of the order of 1 µm and
and selected atomic velocities [13,14], around 300 m/s,
τ̄1 and τ̄2 are of the order of 10−8 s. The lifetime of a
photon in the strongly localized mode of the defect is of the
order of 0.1–1 ms [22] which for micrometre sized defects
corresponds to quality factors of the order of 1010–1011.
These kind of quality factors should be reachable for the
case of empty void regions embedded in a high quality
dielectric (this even extends to the case when 10% of the
mode lies in the dielectric [19,22]). Hence it suffices to
choose the rate of emission from oven 1 so that T1 is of
the order of 10−2 s, and T2 is of the order of 10−6 s, for the
above conditions to be satisfied. In contrast to microwave
cavity proposals [12–14], the data accumulation rate here
is much faster.

Secondly, as it is impossible to tune the atomic veloci-
ties with infinite precision, the atoms entering the crystal
will possess a spread in their velocities thus affecting the
interaction times. One could argue that this could average
out the strength of the correlations described above result-
ing to no net violation. However the violation of the Bell
inequality in our scheme is still quite strong even in the
case of large spreads in the atomic velocities. As a model
we assume a box distribution [12] where the atomic veloc-
ities follow a flat distribution of width ∆v around some
average velocity v̄ (i.e. that from a chopper)

Pi(vi)=


1

2∆v for v̄i−∆v ≤ vi ≤ v̄i+∆v

0 otherwise
· (12)

As shown earlier the Bell inequality is maximally violated
for the singlet state, equation (10). It occurs for the veloci-
ties v1 = 231 m/s and v2 = 270 m/s. Choosing these as the
average values v̄i for the corresponding velocity spreads,
the idealized expectation value S, equation (11) becomes

S̄ =
∫∫

P1(v1)P2(v2)S(v1, v2) dv1dv2. (13)

In Figure 4 we plot S̄ as a function of ∆v for the case
of v̄1 = 231 m/s and v̄2 = 270 m/s. We see a violation
of Bell’s inequality as long as ∆v ≤ 35 m/s holds. Us-
ing current atomic velocity selection technology, preci-
sions [13,14] of the order of ±2 m/s can be achieved.
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Fig. 4. The robustness of the scheme as a function of the
spread in the atomic velocities. The vertical axis is the value the
quantum mechanical sum S̄, equation (13) and the horizontal
the atomic velocity spread ∆v. A violation of Bell’s inequality
is predicted as long as ∆v ≤ 34 m/s.

In that case we find the quantum mechanical prediction
S̄ ≈ 2.812, is almost as big as the maximal violation of
the Bell inequality for the pure singlet state!

To complete the description of the potential of this
scheme as a loophole free way of testing the Bell Inequal-
ities, we have also to calculate the modification of the
strength of the violation due the detector inefficiencies.

Defining the efficiencies ηA, ηB as the ratio of detected
events of a certain kind to the ideally detected ones of that
kind, it can be shown [12] that local realistic theories will
not be possible if (ηA + ηB − 1)S̄ > 2. For this to hold,
η = ηA = ηB must be larger than 0.855 as S̄ has the value
2.812. For a clear violation, an efficiency η of 0.9 or better
is needed. In our case, as we need to distinguish between
optically separated transitions this kind of efficiency is
feasible [13,14].

Lastly we provide a qualitative argument for the poten-
tial closure of the communication loophole in our scheme.
The lifetime of our entangled state is of the order of sec-
onds and the atoms separate with a velocity of a few
hundred m/s.

The analyzing could be done by Raman process (as
we have a dipole-non allowed transition) through a vir-
tual fourth level. The speed of that process can be as high
nanoseconds or ten of nanoseconds. To this we have to add
the detection time which although it varies with the detec-
tion process used, can be as small as 10−8 s (for ultrafast
ionization or shelving techniques for example). This means
that the duration of the whole process is bounded by 10 ns
which is one or two order of magnitude less than the time
needed for a light signal to cover the distance between
the two atoms. No subluminal communication should thus
be possible as long as the atoms are separated by a few
meters.

In summary we propose a loophole free Bell inequality
experiment where atoms are entangled by the interaction
with a highly localized defect mode in an optical photonic
crystal. The use of optically separated transitions which
are stable to background radiation and can be detected

with almost 100% efficiency can lead to the closure of the
detection loophole. In the calculation of the strength of the
correlations, we used a statistical operator approach. This
includes the effect of finite precision in the velocity of the
atoms in the beam. We showed that even for inaccuracies
of order of a few dozen metres per second, the violation
of the Bell inequality was still quite strong. Our system is
capable of satisfying the appropriate time conditions im-
posed by the lack of simultaneity in the generation of our
entangled particles as in the photon type experiments. In
addition the relatively long lifetime of our final entangled
state could allow for the solution of the communication
loophole.
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